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The first part of the paper is an extension of the statistical theory of turbulent 
diffusion to the problem of turbulent diffusion from a point or line source in an 
inhomogeneous straining flow such as flow round a two-dimensional body. The 
new effects which have to be considered are the convergence and divergence of 
mean streamlines, the inhomogeneity of the mean and turbulent velocities, and 
the presence of a boundary. We assume that the upstream turbulence intensity 
uk/Sm is weak, i.e. u&, 1, and that molecular diffusion is negligible, i.e. 

[D/(a?im)] < 1, D and a being the molecular diffusivity and the scale of 
the obstacle respectively. The theory predicts the mean-square dispersion of the 
plume about the mean streamline through the source in terms of the Lagrangian 
statistics of the turbulence. Making the further assumption that the scale L, of 
the turbulence is large enough to satisfy the condition that (u;/iEim) (a/&) < 1, 
it is shown 6hat the turbulent dispersion can be calculated in terms of the Eulerian 
statistics, which can either be measured or in some cases calculated. I n  the 
second part we analyse diffusion from various sources in potential flows over 
two-dimensional obstacles assuming constant (or variable) eddy diffusivity , and 
compare the results with those of the more rigorous statistical analysis for 
sources one or two diameters upwind of the obstacle. However, unlike the statis- 
tical analysis, this eddy-diffusivity analysis can also be extended to calculate 
diffusion from sources placed some distance upwind of an obstacle, and an ex- 
ample is given of how this analysis may be applied to calculating concentrations 
on hills due to distant sources. 

1. Introduction 
The effect of the wind in dispersing pollution from sources above level ground 

has been extensively studied. An excellent recent review is that of Pasquill 
(1971). But there have been very few studies of how airborne pollution is dis- 
persed by the wind in the more complicated flows that occur in the presence of 
buildings at  one end of the scale and of hills a t  the other end. This is a problem 
of pressing importance to architects, planners and public health officials for 
obvious reasons (Holford 1971; McCormick 1971). There have been extensive 
experimental investigations of pollution concentrations on models placed in 
wind tunnels with sources placed in various positions near the models, but 

t Also Department of Engineering. 
$ Present address: Royal Australian Navy Research Laboratory, New South Wales. 
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usually the mean and turbulent velocities were not measured in any detail 
(Halitsky 1968); there have been some detailed measurements of pollution con- 
centrations downwind of buildings when wind velocities were also carefully 
measured (Halitsky 1969). Another full-scale experiment was recently reported 
by Rodliffe & Fraser (1971), for these problems. Theoretical models, using a 
diffusion equation, have been developed by Burger (1964) and Stumke (1964) in 
the course of several papers, but with a number of unsatisfactory assumptions 
and with little reference to the physical processes of turbulent diffusion. A similar 
approach has been used by Berlyand and his colleagues in Leningrad (Berlyand 
1972). A simpler and more realistic model was developed by Scriven & Moore 
(1962) for diffusion in the wake of a bluff body and variants on it were developed 
by Rodliffe & Fraser (l971)t,  but no theoretical models have yet been developed 
to predict the kind of measurements made by Halitsky and others. 

The first aim of this paper ($2) is to apply Taylor’s (1921) statistical approach 
to the problem of turbulent diffusion from point sources placed in a flow over 
a two-dimensional body. (Taylor’s theory has been further confirmed by the 
recent definitive experiments of Snyder & Lumley (1971).) It is not sufficient 
just to consider matter being carried along a streamline and diffusing away 
from it, as if the flow were uniform, because there are two additional effects. 
The first is that streamlines converge and diverge, thus reducing or amplifying 
the dispersion. The second is that the turbulence itself varies along each stream- 
line because of the distortion of the turbulence by the mean flow and the ‘ block- 
ing ’ of the turbulence by the body. Despite these complications we eventually 
find that the mean-square displacement of a fluid particle is given by an integral 
similar to that found by Taylor. Using this integral and the results of Hunt’s 
(1973) analysis of the turbulence round a bluff body, we can then examine 
the effect of varying the integral scale and intensity of the turbulence on diffusion 
from point sources placed at various positions upwind of a cylinder. 

In  5 3 we use existing solutions and develop some new solutions to the diffusion 
equation 

( a x z  azC ay2 azc) a22 ’ 
ac ac 
ax ay 

U - + V - = D  -+-+- 

where D is either the molecular diffusivity or an eddy diffusivity, to calculate 
diffusion from line and point sources situated in flows around two-dimensional 
obstacles. The advantage of using this equation is that the effects of the boundary 
condition aCji3n = 0 are more easily calculable than by means of the statistical 
approach. We then use the solutions to compare the results of problems analysed 
by the statistical and diffusion-equation approaches. We also analyse the prob- 
lem of dispersion from a source placed on the body, which cannot yet be tackled 
by statistical methods. In  3 4 we draw some general conclusions about the validity 
of the two methods and we discuss the applicability of our simplified analyses 
to the real problems of pollution in atmospheric conditions. 

t Some comments on their theory were made by Hunt (1971). 
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2. Statistical analysis 
2.1. Generul results 

The dispersion of matter from a point or line source placed in a turbulent stream 
can be studied by calculating the displacement X caused by fluid motions and 
molecular motion (i.e. diffusion) of the ensemble of all particles which have 
passed through the source P. Let P be situated in a turbulent flow around a 
cylindrical obstacle, the axis of which is parallel to the x axis. (Much of the 
analysis is also valid for any turbulent flow which is homogeneous in the x direc- 
tion, such as a shear flow, but this will not be considered in detail.) 

Assume that the turbulence? is homogeneous in the z direction and that at 
each point in the flow turbulent velocities are stationary random functions of 
time t .  Then the fluid velocity u* can be expressed as 

u* = U+U, (2.1) 

where 

All relevant properties of the velocity field are assumed to be known, the problem 
being to calculate the dispersion from these properties. As a reference for 
measuring the dispersion from the source it is convenient to define the ‘mean 
streamline’ y,(x) as the streamline of the mean motion which passes through 
the source P, at (xp, yp, 0). y,(z) is calculated from the equation 

dYs/h = w 7  %)/u(x ,  Ys) (x ’ (2.3) 

with the initial condition y,(x,) = yp. As we shall see later, y,(x) is not the same as 
the mean particle path. 

Co-ordinates and velocity components in the x, y plane parallel to and normal 
to this streamline are defined as (s,n) and (0, p), (6, 6) (figure 1). We denote 
the value of a parameter on the mean streamline n = 0 by the suffix zero, e.g. 
o(s,  0) = oo(s). For functions on z = 0, or for functions which are independent of 
z we shall in general omit the x co-ordinate. 

If the turbulent velocity is sufficiently large or the distance from the source 
is not large, then molecular diffusion is negligible, which implies that X is deter- 
mined solely by the mean and turbulent motion of infinitesimal fluid particles 
and not by relative motion of molecules. The errors caused by this assumption 
will be discussed u posteriori using the analysis of Saffman (1960). 

If ( N ,  2) is the displacement of any fluid particle in a plane normal to the mean 
streamline produced by the mean and turbulent fluid motions, then N and 2 
are random functions of (s, z, t )  and (8, n, t )  respectively. But if we follow the path 
of a fluid particle which passes through the source at  time to$ then N and 2 are 

t This turbulence may result from the incident turbulence (which is rotational) or the 

8 to being, for example, the time from the beginning of one of an ensemble of similar 
turbulence and vortex shedding of the wake (which is irrotational); Hunt (1973). 

experiments. 
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FIGURE 1 (a) .  Obstacles, mean streamline and co-ordinate system. ( b )  Actual and 
approximate turbulent velocity of a fluid particle at the point (8, N ) .  

random functions of T = t - t o ,  denoted by N ( T )  and Z(T) .  (Angular brackets 
denote the value of a particle's displacement or velocity expressed in terms of the 
particle's time of travel T or displacement s.) By definition of a 'fluid particle', 
N ( T )  is given in terms of the fluid velocity by the Lagrangian equation 

dNldT = V(T)+v"(T), dZldT = w(T), (2.4) 

where T(T)  and E(T) are the components of the mean and turbulent velocity 
normal to the mean streamline, and w is the component of the turbulent velocity 
in the z direction when the particle has travelled for a time T from the source. 
Note that V is caused by the convergence and divergence of the streamlines. The 
problem, as always, is to relate P(T)  and v"(T), say, to the velocities measured 
in fixed frames of reference, which when the particle is ai; (8, N ,  x )  at time T + to 
are P(s, N )  and B(s, N ,  z, T + to). This requires making the assumption that the 
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r.m.s. turbulent velocities are everywhere small compared with mean velocities. 
Therefore we assume that the upstream turbulence is weak and that the mean 
streamline is sufficiently far from the intense turbulence in the wake of the body. 
Thus 

(2.5) 

where &, = (G)g and U, = U as x -+ -a. The assumption (2.5) can be shown 
a posteriori to imply that, if the ensemble averages of N2(s)  and Z2(s) are 

u;/um = a ‘g 1, 

then 
E[N2(s)]  and E[Z2(s)] ,  

{E[N2(s)])*/a = 6 < 1, 

in other words that the average distance moved from the mean streamline by a 
particle, i.e. the width of the plume, is small compared with the distance over 
which the mean velocity changes. It also follows from (2.5) that, for all except 
a tiny proportion of fluid particles which have large turbulent velocities and the 
paths of which may include closed loops, N(s) ,  Z(s) and T(s) for any particle 
are single-valued random functions of s. Thence for any particle, N ,  v”, etc., can 
be expressed unambiguously as functions of s or T ,  e.g. 

N ( T )  = N(s) .  
Since 

ds’ 
o(s’, N(s’)) +fi(s’, N(s’), Z(s‘), T(s’) +to)’ T ( s )  = 

following Batchelor & Townsend (1956), this expression can be expanded in a 
Taylor series as 

where 

which is the time taken to travel along the mean streamline from P to (s,O). 
Thus, although T ( s )  is a random function, to a first approximation it is equal to 
the determinate function To(s). It also follows from N being a single-valued 
function of s that 

dN dN 
- ( T )  = ( U + f i ) - ( ~ )  dT ds 

In  order to calculate N(s),  the relations for P ( T )  and @(T) in (2.4) can be 
expressed in terms of velocities and their derivatives on the mean streamline 
by equating the velocity of a particle at  time T after leaving the source to the 
local velocity a t  (s, N ,  z )  at time T +to. Using Taylor’s series 

P(T) = P ( s , N )  = N(aV/ih)(s ,n = 0)+N2(a2V/an2),=,+..., (2.9) 
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= 0 at N = 0,  by definition. But by the continuity at the point (8, n, x )  

aP P a 0  -+-+-= 0, 
an R+n as 

where R is the radius of curvature of the mean streamline at n = 0. Therefore 
a tn  = 0,  

Since 
ap/an = -dO0(s)/ds. (2.10) 

C(T) = C(S) = 6 (8, N ,  X ,  T + to), 

@(T) = B(s ,  0, To + t o )  + (T - To) (%/at) ( ~ ~ 0 ,  To +to)  + Z(aC/az) (s,  0, To + to) 

+N(a6/an)(s,0,To+to)...  . (2.11) 

The order of magnitude of the second and third terms depends on the scale of 
the turbulence. If the (Eulerian) integral scale of the turbulence upstream is 
defined, in a fixed co-ordinate system, as 

then 

(T - To) aij/at = O(a2To U%/LE) ,  O(a2T0 U:/a) ) 
z(ac/az)'l for LE :a, respectively 

= O(U,aacY/L,), O(aU,S) 
N( acjan) 

Since To = O(a/Um), it follows from (2.11) that 

c(s) = %(s) (1 + [ O ( a a / W ,  O(a)l+ [ W a W d ,  0 ( 4 1 ) .  (2.12) 

for L, :a, respectively. 

It now follows from (2.8)-(2.12) that (2.4) can be expressed either as 

Do(s) ( d N / d s )  ( s )  +N(dDo/ds) (8) - 6(s) = a,, (2.13a) 

where G(s) is the turbulent component of the velocity of the actual fluid particle, 
which may or may not be on the mean streamline, and A, is an error term, or as 

D0(s) (dN/ds) (8) +N(dD0/ds) (s) - G0(s) = 42, (2.13b) 

where C,(s) is the turbulent component of the velocity normal to the mean 
streamline at n = 0 when the fluid particle is at a distance s along the streamline 
and displaced a distance N normal to the streamline, i.e. Zo(s) is only approxi- 
mately equal to the actual velocity of the fluid particle. See figure 1 ( b ) .  

The object of expressing (2.13) in two ways is because of the error terms. It 
follows from (2.7)-(2.10) that 

A, = { - [C(s, 0, x ,  To -t to) + N(dO/dn) (s, O ) ]  (dN/ds)  + N2(d2 Plan2) (s, 0 ) )  

x (1 + O ( 4  + O(@-)), 
whence 

4, = V,{O(aS) + O(62)). ( 2 . 1 4 ~ )  
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But from (2.7)-(2.12),  

A, = A1 + (T - T,) (%/at) ( ~ ~ 0 ,  To + t o )  + N(aB/an)(s, 0, To + to) 

+ (aE/az) (s,O, To +to),  
whence, taking a typical value of To = a/Um, 

A, = Uo[O(a8) + O ( P )  + O(a2a/L,, a2) + O(a8a/LE,  aS)], 

depending on whether 
LE 2 a. 

Thus if the Eulerian integral scale L E  is of the order of or greater than the typical 
scale of the body, then since 6 = O(a) (as shown later) A2 is comparable with A, 
and (2 .13b)  is as accurate as ( 2 . 1 3 ~ ) .  If the scale of the incident turbulence is 
small compared with the size of the body, and yet aa/LE < 1, then (2.13b) is 
stiIl valid, but (2 .13a)  is the more accurate of the two. But in the extreme limit 
a + 0,  8 +  0,  aa/L, = 0(1) then (2.13b) is no longer valid, but the error term 
( 2 . 1 4 ~ )  remains small and consequently ( 2 . 1 3 ~ )  is still valid. 

The solution to ( 2 . 1 3 ~ )  subject to A, being negligible is 

(2 .14b)  

and the solution to (2 .13b)  subject to A, being negligible is 

(2 .15a)  

(2.15 b)  

These results can be expressed in terms of fixed co-ordinates (s, N ,  2, t ) ,  where 
t = To(s) +to, as 

and 

( 2 . 1 6 ~ )  

(2.16 b )  

The physical interpretation of these solutions is that the random displacement 
N(s)  normal to the mean streamline of particles leaving P is proportional to the 
integral with respect to the mean-streamline co-ordinate of the turbulent velocity 
component of the fluid particle normal to the mean streamline. Alternatively N 
can be thought of as the solution of an integral equation which involves the 
velocity at given points at different times, equation (2 .16a) .  However, if the scale 
of the turbulence is not very small N is approximately given by the integral of 
B experienced by a point moving along the mean streamline at  the mean velocity, 
equation (2 .15b) .  This can be expressed in terms of v” on the streamline at speci- 
fied values of 5 and t ,  equation (2 .16b) .  

Consider the mean-square displacement. By the ergodic theorem, since the 
turbulence is assumed to  be a stationary random function of time (in fixed 
co-ordinates) the ensemble and time averages of N2 are identical. The ensemble 
average of N 2  for a particle leaving the source in a number of experiments is 



252 J .  C .  R. Hunt and P. J .  Mulhearn 

identical to the time average F ( s )  of N2,  for a continuous stream of particles 
leaving P ; 

Therefore from (2.15a) in the limit a -+ 0, 6 -+ 0 

(2.17) 

where 

and is the ‘Lagrangian’ covariance of the turbulent velocity component v” of 
a fluid particle at two points distances s’ and s” along the mean streamline from 
the source. These points may or may not be distinct and may or may not be on 
the mean streamline. Since pa(s‘, s”) is impossible to calculate and difficult to 
measure, it is more useful to express F2(s) in terms of a covariance which can be 
measured by standard techniques. From (2.15b) and (2.16b) it follows that in 
the limit a 3 0, 6 -+ 0, (aa/L,) + 0 

pe(s‘, s ” )  = E[G(s‘) v”(s”)], 

- 1  
N2 = - s’ p&’, 8”) ds””, 

Ws) 0 0 
(2.18) 

where peo(s‘, s”) = E[G0(s’) ijo(s”)]. (2.19) 

But since v”(s, n, z, t )  is a stationary random function of time 

PbO(S’, 8”) = p&’, s”, To(s”) - To(s’)), (2.20) 

where, writing out u”,(s, t )  in full, 

Pa&’, S”, TO(S”) - To(s’)) = G&’, 0, 0, t )  Z0(S”, 0, 0, To($”) - To(s’) +to),  

To(s) being given by (2.7). Thus the mean-square dispersion is approximately 
given by a double integral of the covariance function peo(s’ ,~‘ ‘ ) .  This may be 
described as a ‘ pseudo-Lagrangian ’t covariance because to first order it is the co- 
variance at two points of the turbulent velocity component u” coincident with a 
fluid particle at those two points. It is not an exact Lagrangian covariance because 
the turbulent velocity is measured on the mean streamline, i.e. at  (s’,O) and 
(s”, 0) ,  not at  the displacement positions of the particle, (s’, N(s’)) and (d‘, N(s”)), 
hence the prefix ‘pseudo-’. Note that pfiO(s‘, s”; To($”) - To(s’)) given by (2.20) is 
the cross-covariance of v“ at two points s’ and s‘‘ along the mean streamline, but 
with a time delay equal to the average time it takes a fluid particle to  travel from 
s = s’ to s’ = sn along the streamline. 

Perhaps the most surprising features of the results (2.17) and (2.18) are first 
that N2 is calculated from the covariance of the velocity of a fluid particle at 
separate points in space, not time, as is usual in turbulent dispersion calculations, 
and second that the value of the mean velocity is only directly involved at the 

i In the terminology of Corrsin and Lumley (Snyder & Lumley 1971), this would be 
described as m Eulerim correlation in moving co-ordinates. 
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point at which F(s) is required. Of course, #o(s) is needed implicitly to calcu- 
late To(d') - To(s'). 

Given the conditions that a Q 1 and "a/.& < 1, which are necessary for the 
validity of (2.18), Hunt (1973) has shown that pfiro(s',s") can be calculated in 
terms of the Eulerian energy spectrum tensor of the upstream turbulence by 
using a generalization of the methods of rapid-distortion theory (Batchelor & 
Proudman 1954). An example is given in 5 2.2 of the use of this theory to calculate 
the dispersion in a particular case. 

It is now possible to justify the assumption (2.6) in terms of (2.5). Analysis of 
(2.17) and (2.18) shows that, for all scales of turbulence, if s = O(a) as a+ 0, 
S - t O  

Therefore, as defined in (2.6), 

which confirms the assumption of (2.6) that, if a Q I ,  6 Q 1. Thus the ratio 
aa/Lz = O(8a/LE), so that the limitation on the solution (2.18) physically implies 
that L, >> S. For if LE < a8 it  is clear that Go(s, t )  could not be used as an approxi- 
mationforv"(s, N , Z , t ) .  

If a/& is O( 1) it is possible to calculate N more accurately, by expanding 
N and A2 as series in a: 

(2.23) 

N2 = O(a2a2). (2.21) 

6 = O(a), (2.22) 

N = + a2N(l) + . . . , A,  = U,(a2Aio) + a3A!j1) + . . . ), 
where aN(O) is given by (2.15b) and NC1) is given by the solution of 

d(U0(s) N ( " ( s ) ) / ~ s  = U, AL0)(s), (2.24) 

where A!jo)(s) is calculated from (2.14) using N(O)(s). Thence the error in N2 
can be calculated and will be O ( a W ) .  

More interesting than the error inN2 is the consequence of (2.24) that, although - 
N q s )  = 0, 

E["2N(1)(S)] = a,rn(s) * 0, 

because E[A(O)(s)] contains terms like 

Thus to second order the mean path of fluid particles, which is the centre of the 
plume, does not follow the mean streamline. As the terms in the expression for 
E[A(O)(s)] show, this divergence is caused by (a)  variations normal to the mean 
streamline of the mean velocity components 0 and P and their derivatives, and 
of the turbulent velocity G and ( b )  the Reynolds stress on the mean streamline 
CV". The latter effect has been known theoretically and observed experimentally 
since the work of Hinze & van der Hegge Zijnen (1951)7, but the former effect 
has not been noticed before. 

Now consider the displacement Z(s, t )  in the plane perpendicular to the flow 
(the z direction of figure 1) of a fluid particle emanating from the source. If 8 

7 See also the paper by Batohelor (1964). 

- 
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is the turbulent velocity in the z direction then, since there is no mean velocity 
in the z direction, 

dZ/dT = G(T). 
Since Z = 0 when T = 0, 

Z(T)  = / r G ( T ’ ) d T ’  

and 

@(T) = /;Tp@(T‘, T”)  dT’dT”, 
0 

(2.25) 

(2.26) 

where 
p,a(T’T“) = E [G(T’)G(T”)]. 

ps(T’T”) is the usual Lagrangian covariance introduced by Taylor (1921) of 
the velocity component G of a fluid particle a t  two moments in time, T’ and T”; 
i.e. at two points (s(T’), N(T’),Z(T’)) and (s(T”), N(T”), Z(T”)). 

Finally it may be of interest to calculate the dispersion of a cloud of matter 
emitted from the source, in which case we must calculate the displacement of a 
particle along the streamline, S(T) ,  which must satisfy the equation 

dSjdT = u( T )  + ii( T )  = Do( T )  + N(  T )  (ao/’lan),,, ( T )  + ii( T ) .  

But the mean displacement B satisfies 

dBjdT = Oo 
and therefore 

d(S - @/dT = G(T) + N(T)  (ao/an),=,. 
Thence, from (2.15b), 

(2.27) 

(S -S ) (T )  = /~ i i (T . )dT’+/ ,  T [--( 1 aO ) [/~‘(iJ(T’’)j~,(T’’))dT” Do an n=O 

whence (X - S)2 can be calculated. But on the stagnation line of a body, where 
aOIBn = 0, 

(2.28) 

where 

On the other hand, when au/an is significant, the second term becomes dominant. 
In  the case of a uniform shear flow where aO/’lan is a constant, we recover Cor- 
sin’sresult quoted by Tennekes & LumIey (1972, p. 232), that as T --f co 

pC(T’, T“)  = (.iZ(T’)G(T“)). 

(S-$)2 ~ ~ ( ~ ) ‘ T 3 ~ ~ ~ ~ ( T ’ , T ’ + r ) ~ ~ .  3 an (2.29) 

Since in a uniform shear flow, as T 3 00, 

F - 2T p5(T‘, T‘ + r )  dr, 1: 
in a uniform shear flow, a cloud becomes elongated in the flow direction. The 
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results for (S - ,!?)2 on the stagnation line in 5 2.2 will show how these effects are 
modified for flow round a body. 

In  many diffusion problems by inspecting the relevant integrals (2.15), (2.26) 
or (2.27) it is possible to draw some general conclusions about the dispersion far 
from the source. This is not possible in this problem until we have studied how 
the flow round the body changes ps, ps and pa. However, near the source we can 
follow Taylor in showing that 

(P)+, (FF)h, (S2-P)+ = (S/O)((sj+, (P), (@p} (s = 0). (2.30) 

That is, the r.m.s. dispersion is proportional to  distance from the source. 
The error introduced by neglecting the effect of molecular diffusivity can be 

estimated. Saffman (1960) has shown that, for isotropic turbulence in a uniform 
flow when 2P < 1, 

N2 = %+ 2DT -$DTzT2 + higher-order terms, (2.31) 

where @is N2 calculated by Taylor's statistical argument neglecting the mole- 
cular diffusivity D, and 3 is the mean-square turbulent vorticity. The third 
termin this expansion represents the interaction between molecular and turbulent 
diffusive actions. For non-homogeneous flows one would still expect the magni- 
tude of molecular diffusion effects to be similar to those of the second and third 
terms in (2.31). When 01 < 1 and aa/LE < 1 we have shown in (2.21) thab 

N z 2 a 2 / U 5 .  Hence the error in neglecting molecular diffusivity is of order 
(2la) [ D / ( a ( z ) + ) ] ,  which is much less than I for all but the weakest turbulence. 

When d T 2 a  I Saffman has estimated the third term in (2.31) to be of order 
D z / ( v R i ) ,  where Rh is the Reynolds number based on the dissipation length A. 
For many laboratory-scale experiments >T2 < 1, but for full-scale experiments 
wheregT2 9 1, taking a wind speed of lOm/s and h N 0.3 cm, R, N 2000. Hence 
in the full-scale situation molecular diffusivity will still have a small effect, given 
that the source is only a few diameters upstream of the body. See 0 4 for further 
comments on this limitation. 

An important limitation to our general results (2.15)' (2.26) or (2.27) is that 
they are not valid when (F)t is greater than the distance from the source stream- 
line to the body. On the body, v" = 0, yet v" + 0 on the source streamline, so that if 
the effecii of the body is to be analysed we shall have to allow for the effect of the 
mean statistical properties of v" varying across the plane. This is a problem yet 
to be studied. 

- 

2.2. Diffusion in a turbulentjiow round a circular cylinder 
We shall assume that a < 1, aa/L, < 1 and in addition that LE > a. In  that case 
the turbulent velocity distribution can be calculated using a ' quasi-steady ' 
assumption (Hunt 1973). The turbulence induced by the wake is not known and 
will be neglected, although if known it could easily be incorporated into the 
results . 
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If u, denotes the x, y or z component of velocity near the body, then for large- 
scale turbulence u, can be expressed in terms of the j th  component of velocity 
upstream by the matrix Mij(x, y): ui(x, y, z, t )  = Mi&, y) u,&, t ) .  Assume x and y 
to be normalized in terms of the cylinder's radius a,  and concentrating on the flow 
forward of the separation point, we assume that the mean (and hence the turbu- 
lent) velocities are approximately given by potential-flow theory, so that 

(2.32) I 0 0 1 1 

I - (x2-y2)/(x2+ya)z -2xy/(x2+y2)2 

Hij  = - 2xy/(x2 + y2)2 1 + (x2 - y2)/(x2 + y2)2 0 . 

Thence the turbulent velocity normal to the streamlines 

where 
.ij = (u2-mul)/(i+m2)4, 

m = - 2xy/[(x2 + y2)2 - (x2 - y2)] 

and is the slope of the streamline. 
From (2.32) and (2.33) it follows that 

M2i - mMlj = 0, 
whence w, y, 2, t )  = um2V) P(x,  y), 

where P(Z,Y) = ( ~ 2 2 - ~ J G ) / ( I  +m2)4 

(2.33) 

(2.34 a )  

(2.34 b)  

(2.35) 

Thus the x component uW1 of turbulent velocity upstream, does not provide any 
contribution to 6. If the source at (xp, yp) lies on the streamline with stream func- 
tion @, where @ = yp[l - ( l / (xi  +yg))], then at  any x the y oo-ordinate of the 
streamline can be calculated from the equation 

(2.36) 

(2.37) 

where the time taken to travel between s' and s", or x' and x", is T" - T'. Note 
that pea has been transformed to a function of an Eulerian autocorrelation. We 
can transform (2.37) again because 

um2(T') um2(T") = &R2,(T" - T'), 

where I?,, (T" - T' )  is the Eulerian autocorrelation in the uniform flow upstream. 
But since T" - T' = O(a/U,)  and since 

0 
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it follows that R,,(T"- T ' )  = 1. Therefore pao(s', s") = u2,,F(x', +) F(x",  $), 
whence 

- 

(2.38) 

This integral has been computed for a number of values of yp when xp = - 3 and 
the results are shown in figure 2(a) for a particular value of ( Z 2 ) * / U ,  and in 
figure 2 (b )  for general value of (Z,)*/U,.  Rapid growth of (F)* can be seen on 
the stagnation streamline, while for sources off the stagnation streamline ik can 
be seen that in the x, y plane the plumes first expand and then contract as the 
streamlines converge a t  the sides of the body. For large-scale and weak turbu- 
lence this phenomenon occurs whatever the value of (Z,)*/U,. Note that it 
follows from (2.15) and (2.343) that if u,,(t) has a Gaussian probability distribu- 
tion so has N at a particular value of s and the concentration profile of the plume 
is then also Gaussian. 

Since in the limit 
L, B a, 

$(x, Y, 2, t )  = %3(Z, 4, 
from (2.26) 

(2.39) 

which shows that, unIike (m)*, the plume always grows in the z direction down- 
stream from the source, wherever the source may be situated. This point is illu- 
strated by the differencein the graphs of (x2(x))4 and (%(x))gfor the plume origin- 
ating at  ( -  3-12, 04),  shown in figures 2(b) and (c). 

Since 6 = (ul +mu,)/( 1 + m2)*, from (2.32) it follows that 

where 

and y = y(x, $) is the solution of (2.36). Following arguments similar to those 
for (N2)4, but making the additional assumption of isotropy of the incident 
turbulence so that ugl = ug, and umlu,, = 0, equation (2.28) leads to the follow- 
ing result for a source on the stagnation line: 

- -  

This result is also shown graphically in figure 2. 
Consider the particular case of the dispersion from a source placed on the 
I7 FLY 61 
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FIGURES 2 (a) ,  ( b ) .  For legend see facing page. 
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FIGURE 2. Dispersion from sources near a circular cylinder. (a)  Plume widths for large- 
scale turbulence with (u%)*/U,, = 0.05. Source positions are indicated. The central curve 
from each source position is the streamline on which it is situated. The distance between 
the two full lines on either side is (@)a and is drawn to scale. The distance between the 
dashed lines is (@*; the width of the ellipses in the streamwise direction is (% - s2)k (b ) ,  (c)  

Comparison of values of (s)* and (E)* for sources on and off the stagnation line, calculated 
by the statistical (solidline, LE 9 a)  and diffusion-equation (brokenline) methods. Left-hand 
axes are scaled for ( a ) * / U ,  = 0.05 and ( t ~ ) ) / U m  = 0.05. Right-hand axes are scaled for 
arbitrary values of (=)*/Urn and (u2*/Um and 9. 

stagnation line, the only one for which simple exact solutions are possible. If 

= [(Z2)*/U,I [x - (1/x) + x, - l/X,]/( 1 - l/x”. (2.41) 
Thence as x -f - 1, 

so that the width of the plume apparently becomes infinite ! In  fact when 
(@I* - - [ ( Z Z ) ~ / ~ , l  (X, - 1/Xp)/[2(1 + x)l, 

- (1 + x) Urn/(Uii2)+ < 1 

the assumption (2.6) that ( 7 2 ) 3  < a is violated so the analysis is invalid. The 
value for (F2)* around the cylinder is then also wrong. Figures 2 (a) and (b )  clearly 
show the broadening of the plume in this region: 

(2.42) 

17-2 
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(8219 - [ (u i )9 /~~]{ -41n  [z+11}. 

Thus as the stagnation point, is approached the plume widens rapidly in the z 
direction but not as rapidly in the y direction, as shown by figures 2 (a) and (6). 

(s2-@}+ = [(zc”,l)qu,] (x+X*) .  (2.43) 

A cloud only widens linearly along the stagnation line, and therefore becomes 
like a flattened rugby football! Comparing this effect with that due to shear 
indicates that, for sources a little off the stagnation line where aOpn =+ 0, the 
two effects compete with each other, perhaps leading to no significant change in 
cloud shape from spherical. 

Finally, if the turbulence is isotropic, 

3. Diffusion-equation methods 
3. I. Justification of the method 

The statistical analysis has provided a method for calculating the plume width. 
By assuming a probability density distribution for G, v“ and G, the method can 
be extended to predict the distribution for the concentration C. However, so 
far we have not been able to extend the method to find C(x,  y) close to the body, 
and therefore we have to  consider using the diffusion equation. Scriven (1970) 
has proved that the diffusion equation can be used satisfactorily to predict 
maximum ground-level concentrations, or at least upper and lower limits. 
But, as Pasquill (1971) has pointed out, the distribution of C along the ground 
is not well predicted. 

However, we have seen in 0 2 that in a straining flow the converging or diverg- 
ing of streamlines may be as important as the diffusion process. Therefore the 
correct modelling of the diffusion terms may be less important in demonstrating 
the general effects on the distribution of C of flow over buildings and hills, a sub- 
ject about which little is known but more ought to be (Pasquill 1972). 

3.2. Diflusion from a line source 
The two-dimensional diffusion equation with a constant coefficient may be 
written as 

where U’ and V‘ are the x and y components of mean velocity normalized with 
respect to U,. x and y are normalized with respect to a dimension a of the body 
(the radius in the case of a cylinder), and 

C = C*aU,/&, (3-2) 

Cf being the time-mean concentration a t  (x, y) and Q the quantity of matter 

t Cis the quantity K,  described by Halitsky (1968) as a concentration coefficient. 
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FIGURE 3. (a)  Plume in r,y space. ( b )  Plume in $,@ space. 

emitted by a line source per unit time per unit width. Finally, the normalized 
diffusion coefficient 

where D is the molecular diffusivity and where the appropriate K is the eddy dif- 
fusivity, which is, unless otherwise stated, assumed to be constant. 

If we now assume that the flow round the body is irrotational then the general 
solution to (3.1) for a line source is that found by King (1914) by using Boussinesq’s 
(1905) transformation of (3.1). If we write 

9 = (D+K)/(aUm), (3.3) 

u‘ = a4px = a+pY, 

r = a+py = - a$lax, 
(3.1) becomes 

Then the solution for a line source placed at  4 = q5p, $ = $p (see figure 3a) is 

where K,(x) is a modified Bessel function. I n  this solution the boundary con- 
ditions on the body at  $ = 0 have been ignored, so that the solution is valid if the 
width of the plume is small compared with the distance of the streamline q? = +p 

from the body, i.e. 

If (3.6) is satisfied, and if 

then using the asymptotic form for KO($), (3.5) becomes 

81. < $0. (3.6) 

9< 1, (3.7) 
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This is found to be a good approximation in many cases of practical interest. If 
the further approximation is made that the plume is sufficiently thin to assume 
that, if 8', s and n are the non-dimensional forms of 0, s and n (defined in figure I), 

which is valid everywhere except near the stagnation point, then (3.8) becomes 

3.3. Effects of the boundary 

The body not only affects the dispersion by affecting the velocity, but also by 
imposing a boundary condition on the concentration. If the body is assumed to be 
impermeable to the pollutant, then the boundary condition is 

acpn = a q a $  = o.? (3.10) 

For sources on the stagnation streamline the solution (3.5) satisfies (3.10) 
identically, but to satisfy (3.10) for sources off the stagnation streamline is more 
difficult. Formal solutions have been obtained as infinite series of parabolic 
cylinder functions as shown by Gill (1960), but these have not yet been evaluated. 

3.4. Asymptotic solutions for diffusion from point and line sources 
If we consider a point source on a streamline in any two-dimensional rotational 
or irrotational flow and if we assume 9 to have different values for diffusion in 
the two directions normal to the mean streamline then, in the limit 9 .+ 0,  the 
equation governing convective diffusion in terms of the non-dimensional stream- 
line co-ordinates (s, n, z) is 

(3.11) 

We assume that 9l and B2 may be functions of the distance s along the stream- 
lines but do not vary across the plume. This assumption is exactly similar to that 
we used for the analysis of turbulenti diffusion in Q 2.  By continuity, the equation 
becomes 

(3.12) 

-f In general the boundary layer on a body cannot be ignored when calculating mass or 
heat transfer to its surface. But if the body is impermeable, the external flow is turbulent 
and the source is outside the boundary layer, then the boundary layer of the body is probably 
unimportant. 
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to which the solution for a point source of strength Q units of matter per unit 
time is 

4 91(s')u;ds' +22 

3 (3.13) 
exp { - [ n 2 0 ' 2 /  ( f 0 ) /( 41; % ( s f )  $31 ] 

)" 477 (Sd*9J1(s~) O0(sf) ds 'J;02(s ' )  ds'/U,(s') 
C(s,n,z) = 

where C = C*a2U,/Q. We are not aware of a previous derivation of this solution, 
although we are aware of the attempts by Stumke (1964) to find approximate 
solutions to (3.11), with and without a variable diffusion coefficient. The solution 
for a line source can be obtained by integrating with respect to z:  

where C is defined by (3.2). This solution was first obtained by Burger (1964), 
but he did not appreciate that it; is equally valid for a rotational as for an irrota- 
tional flow: thus, for example, it is valid for diffusion from a line source in a 
shear flow. Note that, if 9J is constant, (3.13) is identical to (3.9). 

To allow for the effects of boundaries additional terms must be constructed. 
To compare the solutions (3.9), (3.13) and (3.14) with the values ofN2 and 22 
calculated by statistical methods in $2, we have to define p a n d  F i n  terms of C 
in the same way in both cases. Batichelor & Townsend (1956) show that for turbu- 
lent diffusion 

(3.15) 

and 

3.6. Resultsfor sources near a circular cylinder 

(3.17) 

(3.18) 

Assuming a constant diffusivity and using (3.8) and (3.17), (F)& has been 
calculated as a function of s, the distance from the source P, for a number of 
sources placed in an irrotational flow round a circular cylinder. The results are 
presented in figures 2(b ) ,  2 ( c )  and 4, for a value of 9 = 2.5 x which was 



264 J .  C. R. Hunt and P. J .  Mulhearn 
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FIGTJRE 4. Plume widths for constant diffusivity 9 = 2.5 x See caption 
of figure 2 for meanings of lines. 

chosen to give plume widths comparable with those in figure 2 (a). The solutions 
(3.5) and (3.13) have been used to calculate the non-dimensional concentration 
along the centre-line of plumes emitted from line and point sources placed at 
various upstream positions in the irrotational flow around a circular cylinder. 
The results are shown in figures 5 (a) and (b ) ,  which include the graphs of Cagainst 
x along the centre-lines of plumes emitted from sources in the absence of an ob- 
stacle in the flow. 

Now consider the detailed implications of our solutions (3.9) and (3.12). 
Source on the stagnation streamline.? Consider first a line source at xP = - X,, 

yP = 0. Then the solution for C,  when 9< I and n 4 1, can easily be found from 

C = exp ( - y2/62)/(n*60’), (3.19) 
(3.9): 

where 0’ = I - l/x2 and the thickness of the plume 6 is given by 

(3.20) 
= 4qx, + l/X, + x + I/xJ/( I - 1/x2)2. j 

Note that for a source on the stagnation streamline aClan = 0 on the body 
so that (3.10) is satisfied. It is particularly interesting to consider C near the 

This might represent dispersion from point souroes produoed by flows round buildings 
and hills in very stable atmospheric conditions when all velocities are horizontal and dif- 
fusion occurs in horizontal planes. 
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FIGURE 5. Plume centre-line concentrations for (a )  line and ( b )  point sources upstream of a 
circular cylinder; 9 = I, source at  ( - 3.16,O); 11, source at ( - 3.16,0*17); 111, source at 
( - 3.0, 1.0); IV, source at ( - 3.16, 0) but no cylinder in the flow. 
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stagnation point at  x = - 1. Take the half-width of the plume as (r2)+, defined 
by (3.15), then (3.20) shows that (r2)a = 6/2*. Now as x +- 1, 

S N {9(X, + 1/Xp)}4 (1 + w, (3.21) 

so that very close to the stagnation point S becomes singular or, in physical 
terms, the width of the plume 6 = 2(N2)* becomes very large. The effect can 
be seen in figures 2 (b )  and 4 and is similar to but less marked than that calculated 
by the statistical analysis of large-scale turbulence as shown in figure 2. The 
reason why the spreading is less when calculated by the diffusion equation is that 
near the stagnation point in large-scale turbulence the turbulent velocity com- 
ponent v” is nearly doubled, thus amplifying the dispersion caused by the diverg- 
ing of the streamlines. It is interesting to speculate whether the diffusion equation 
does in fact approximate to the result of diffusion produced by very small scales 
of turbulence. 

Near the stagnation point x + - 1, the value for the concentration is given by 

C(y = 0) - *{7&(XP + I / X P  - 2))-+. (3.22) 

Thus although (F2)4 + 00 as x --f - 1, C remainsfinite; the reason is that the flux 
of pollutant remains constant in the plume, i.e. 

c x 6 x 0‘ = constant. (3.23) 

Therefore, since, as $ 4 - 1 ,  Gccll+xl-l and ??acll+xl, it  follows that C 
remains finite. If we compare the expression for C in (3.22) with the value C 
would have at x = - 1 in the absence of the body, C,, we find 

C,(x = - 1,y  = 0) = *(7&(X P - l))-k 

So that we have the surprising result, which is also visible in figure 5, that 
C > C, for all values of X P ;  for a typical case when Xp = 3, C = l-ZC,,. The 
physical reason is that with the mean flow spreading the plume less diffusion 
occurs normal to the streamlines than for an unobstructed plume. 

Calculating C(x, y) using (3.5) and plotting the results in the form of contour 
lines of constant values of C, shown in figure 6 (a),  indicates that the greatest 
change due to the body’s presence occurs away from the stagnation point. At 
y = 0.5 concentration levels are approximately double, which is simply due 
to  the pollutant being convected round the body. In  order to  reach the same 
place, in the absence of the body it would have to be diffused laterally. 

Now consider the problem of a point source at  ( -Xp, 0) .  The solution for C 
when Bl = g2 = 9 4 1 is 

(3.24) c = exp { - [y2/a2 + z2/(  4$3T)]}, 

It follows from (3.24) that the width of the plume in the y direction is the same as 

for a line source, so that (F)* = 6/24. If the half-width of the plume in the x 
direction is defined as in (3.18) then 

(@)1= 9 i T .  (3.25) 
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Y 

FIGURE 6. Contours of concentration for source at ( - 3,O).  9 = 0.1. - , contours 
in presence of cylinder; --, contours in absence of cylinder. 

- Therefore as x -+ - 1, 
( P ) 4  N [ - p l n  1. + lip, 

which is the mathematical reason for the results shown in figures 2 (b), 2 (c) and 
4 that the plume width also becomes very large in the z direction as well as the 
y direction, though it grows more slowly as the stagnation point is approached - 
a similar result to that obtained from the statistical analysis. The most interest- 
ing difference between the line and point sources is the value of C, since for the 
latter 

C(y = 0) N 1 /{4n~(X,+1 /X~-2) ( -~1n~x+1) )}  as x-f-1, (3.26) 

so that at the stagnation point (in the limit x +- 1, 9 -f 0) C -+ 0. This result 
can be explained by means of the continuity equation (3.23), which for a point 
source involves the width in the z direction, as well as 6: 

cx  6 x 17’ x (B)+ = constant, 

(z2)-+m and SxU’-+constant, C - t O  as x-+-1. 

Despite this mathematical limit, when x = - 1.01, the ratio of C to C,,, the vaIue 
of C in the absence of the body, was found to be only 0.83. In  fact when 

and therefore, because 

Ix+ l (  = o ( 9 )  

the solution (3.21) breaks down, and a new solution (not yet found) is required. 
Xources off the stagnation streamline. Equations (3.5) and (3.12) were used to 

calculate (F)* and C for line and point sources off the stagnation line, shown in 
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figures 2(b) ,  2(c), 4 and 5. These solutions are only valid if the plumes do not 
touch the body surface. Once that happens (3.10) is violated. They are therefore 
useful for 9 not too large. The curves for (F2)4 in figures 2 (b )  and 4 show that the 
diffusion-equation solution is similar to that of the statistical analysis in that, in 
the x, y plane, the plume widens as the streamline approaches the stagnation- 
point region and then contracts as the flow passes over the top of the cylinder. 
In  figure 5 (a) it is interesting to see how in the plumes of line sources, despite the 
considerable variations in the values of (p)S for different source positions, along 
the line 2 = - 1 the value of C only varies by 15 yo between the plumes emanating 
from sources at  ( -  3,O) and ( -  3,1*0),  i.e. curves I and 111. The fact that C is 
greatest on the stagnation line has already been discussed. Then even these small 
differences disappear as the streamlines converge and the flow accelerates near 
the top of the cylinder a t  x = 0. It is surprising to note that, on x = 0, C is 
actually slightly lower than Go whatever the position of the source. I n  figure 
5 ( b )  a different pattern emerges with C being less than C,, for the two plumes 
emanating frompoint sources on or near the stagnation line (I and 11). The reason 
is that the time for a particle to reach the line x = - 1 from its source is greater 
in the presence of the cylinder and therefore (@)$ is larger. But C is greater than 
C,, in a plume emanating from a point source placed a unit radius off the stagna- 
tion line because (B)* is only slightly greater than in the absence of the cylinder 
and therefore this effect causes a smaller reduction than the two-dimensional 
amplification shown in figure 5 (a). 

Source at the stagnation point. Halitsky (1968, p. 246) performed an interesting 
experiment when examining diffusion around the model of a cylindrical reactor 
building. He placed a source at  the upstream stagnation point and measured the 
dispersion of the pollutant as it was convected round the circular cylinder. To 
show how the diffusion equation can throw light on this complex problem, we 
now consider the exact two-dimensional solution for the concentration. Near the 
stagnation point, in our normalized co-ordinates and variables 

$-&, = s2-n2, $-$ P = 2sn, 

where the s direction is parallel and the n direction perpendicular to the body. 
Then from the exact solution for the concentration, equation (3.5)) one obtains 

1 s2 + n2 

Note that aclan = 0 at n = 0. 
Now consider the two limiting regions of the flow: 
(i) As s2+n2 + 0, 

C N -(n9)-'In[(s2+n2)*]. 

(3.27) 

(3.28) 

That is, very close to the stagnation point, where the mean velocity is zero, the 
concentration is a function of radial distance from the source only. 

(ii) When (@+n2)/9 1, 

C - exp ( - n219) /[47&(sZ + n2)]+. (3.29) 
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FIGURE 7. Contours of concentration for line souroe at  ( - l , O ) ,  
the upstream stagnation point. 

Thus when s2 >> n2 

269 

1.5 

1.0 

Y 

0.5 

0 

(3.30) 

which means that, as the plume is convected downstream, fist ,  its thickness 
does not increase and second, the concentration falls away like s-l rather than 
the slower rate of s-* found in constant-velocity flows. Both these effects are a 
result of the flow accelerating along the body’s surface. This case can be com- 
puted exactly from (3.5) and the results thus obtained are shown in figure 7. 
Here 9 =@I as in figure 6 .  Contrary to the results presented here, Halitsky 
found in his experiments that the plume was thickest at  s = 0. This was most 
likely due to downwash on the front of the cylinder with a vortex curling around 
the front of the cylinder at  ground-level. Our assumption of two-dimensionality 
excludes such effects. 

The effect of a hill. If one idealizes flow over a hill as irrotational flow over a 
cylindrical obstacle and assumes uniform flow upstream one can transform the x, y 
plane into a #, @ plane (see figure 8). If the effect of the ground is then represented 
by an ‘image’ source the boundary condition is satisfied and, for example, 
ground-level concentrations can be calculated. From (3.9) it follows that using 
an image source at  @ = - $-p the ground-level concentration for a line source 
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FIGURE 8. Configuration for flow around a hill in x, y and 9, $ space. 
In $, $ space the ‘ image’ source is shown a t  ($D, - pn). 

To calculate the maximum ground-level concentration Cgmax differentiate Cg 
with respect to $. Then 

- i ?f% 

2 ( 4  - 4J + 4%d - $2 = O, 

whence at  the point of maximum ground-level concentration 

(3 .31)  

(3.32) 

We now take as an example of a hill a semicircle of height h, in terms of which 
the flow parameters are normalized, and we assume that the source has a height 
H and is a distance X, upwind of the centre-line of the hill. Then 

whence (3.33) 

and therefore we have the interesting result that the ratio h of C,,,, with and 
without the hill is 

(3.34) 

Thus the maximum ground-level concentration is increased indefinitely (i.e. 
h --f co) as the position of the source approaches the surface of the hill. For 
the common practical situation where the source is placed some distance up- 
wind and X ,  $ H ,  the fractional increase in CgmaX is (h/Xp)2,  which one notes is 
independent of Hlh. The calculation would certainly suggest that the maximum 
ground-level concentration will usually only increase fractionally when pollutant 
is blown by the wind over a two-dimensional ridge of hills. (The interesting result 
(3.31) and (3 .32 ) )  but not our general conclusions, for line sources were originally 
obtained by Stumke (1964)) but as they are not widely known we have repeated 
their derivation here.) Other interesting investigations along these lines have been 
reported by Berlyand (1972). In  figure 9 (a)  ground-level concentrations from 
a source at xp = - 2 with various values of H/h are shown for 9 = with and 
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FIGURE 9. Ground-level concentrations for various source heights with and without a hill 
downstream. -, concentration with hill; --, without hill. Source heights are shown on 
curves for a hill of height h. (a) 9 = 0.01, sources placed at  various heights H / h  in the plane, 
q, = -2. Values of H / h  are shown on each curve. (a) 9 = 0.1, sources placed in the plane 
x, = -3 .  
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without the hill present. If we estimate $B in terms of turbulence parameters as 
9 = (&)i/LE and L, N h, the hill height, this corresponds to ( G ) * / U ,  = 1%. 
For such a low turbulence level the plume is very narrow with high concentrations 
near the plume centre-line. I n  this case a decrease in the distance between the 
ground and the plume centre-line, caused by the presence of a hill, leads to a large 
increase in local ground-level concentrations from values which are very low on 
flat terrain. These values are still very small however compared with those on the 
plume centre-line. As predicted by (3.34) the maximum ground-level concentra- 
tions do not increase significantly, and as predicted by (3.31) for H/h > 0.4 
these maxima must occur well downwind of the hill. 

Taking next a case where the turbulence is more vigorous and 9 = 0.1, 
figure 9 ( b )  then shows that the maximum ground-level concentration occurs 
upwind of or on the hill. For a source the same height as the hill we note a 20 % 
increase in C, in agreement with (3.34). Possibly the most significant effect of a 
hill is that the average concentration over the hill’s surface is much greater than 
over an equal area of flat terrain for the same height of chimney. Where the 
surface absorbs pollutant, this must be a serious consideration, even though Cum,, 
is not significantly increased. 

4. Discussion 
In  our statistical analysis of $2  we have shown formally that, if Lagrangian 

autocorrelations or in limiting cases Eulerian autocorrelations in moving co- 
ordinates of the turbulent velocity are known only simple integrals, (2.10) and 
(2.26)) need to be evaluated to find (-)i or @)*, the effective transverse dimen- 
sions of a plume emanating from a line or point source. This in itself seems a 
significant step forward since the combined effects of turbulent diffusion and 
convection in a changing velocity field make for a very complicated problem. 

In  general quantitative predictions can probably only be obtained for cases 
where one can calculate these velocity correlations, since if the integrals were to 
be calculated using experimental data the amount of data required would be pro- 
hibitive. There is no method of calculating Lagrangian autocorrelations, but 
when a < I and m/L ,  < 1 then Hunt (1973) has shown that the ‘pseudo- 
Lagrangian’ autocorrelations defined in (2.20) can be calculated in terms of the 
spectrum of the upstream turbulence. It only appears to be computationally 
feasible to calculate the turbulence when L, 9 a, the case examined in $2.2, 
or when L, 

The advantages of the statistical method are clear: it is based on an accurate 
representation of the turbulence and the results show the effect of different 
turbulence properties on the dispersion from a source. There are, however, some 
serious disadvantages. First, only (G)Q and (@)& are easily calculable, the 
distributions of concentration are not. Second, it is not easy to take into account 
turbulence properties varying between streamlines. Therefore, because the 
turbulent velocity normal to the body’s surface is zero, the simple method can- 
not enable the boundary condition aCpn = 0 to be satisfied. I n  the complicated 
flow near the stagnation point, even though the turbulent velocity has been 

a, a case which will be examined in a later paper. 
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calculated, its effect on diffusion has not. Third, and most important, the results 
are only valid if the distance x of the source upstream is such thak (N2(x))+ < LE 
or a, i.e. x < LEUm/(qz)* ,  for very large buildings or hills, and x < aU,/(zcaz)4, 
for most buildings with a dimension a. 

The diffusion equation for sources placed in the potential flows we are dis- 
cussing here has the great merit that, thanks to King's (1914) solution, it can be 
solved easily. It can be solved (a) for moderate values of 9 as well as small values, 
which means in terms of turbulent diffusion that the turbulent intensity can be 
high, and (b)  in a complicated flow near a boundary such as a stagnation-point 
region, and (c) the solution gives the distribution of C, which can be quite com- 
plicated and far from a simple Gaussian profile. The disadvantage is the very 
serious one that it is difficult to relate 92 to the turbulence properties, even if it 
is considered a variable function. 

In  considering these two approaches we are of the opinion that once an approxi- 
mate value for 9 has been found by comparison with the statistical approach 
the solution to most complicated, non-uniform diffusion problems may best be 
estimated by means of the diffusion equation. This approach may give physical 
insight into many diffusion problems hitherto regarded as too complicated to 
analyse theoretically, for example the problem of ground-level concentrations 
over hills, and may provide some justification for the mathematical models now 
being deployed to compute concentrations of air pollution in hilly terrain (e.g. 
Hino 1968). 

We intend to extend the work begun here and to apply the conclusions to 
practical situations. 

R E F E R E N C E S  

BATCHELOR, G. K. 1964 Diffusion from sources in a turbulent boundary layer. Arch. 

BATCHELOR, G. K, & PROUDMAN, J. 1954 The effect of rapid distortion of a fluid in turbu- 

BATCHLEOR, G. K. & TOWNSEND, A. A. 1956 Turbulent diffusion. I n  Swrveys in Mechanics 

BERLYAND, M. E. 1972 Atmospheric diffusion investigations in the U.S.S.R. Appendix 

BOUSSINESQ, M. J. 1905 Sur la pouvoir refroidissant d'un courant liquide ou gazeux. J. 

BURGER, W. 1964 Ein Verfahren zur Berucksitchtigung des Einflwses von Gebauden 

GILL, A. E. 1960 Forced convection. M. A. thesis, University of Melbourne. 
HALITSKY, J. 1968 Gas diffusion near buildings. In Met. & Atomic Energy, p. 221. U.S. 

Atomic Energy Commission. 
&ITSKY, J. 1969 Validation of scaling procedure for wind tunnel model testing of 

diffusion near buildings. Dept. Met. & Oceanography New York University, Rep. 

HINO, M. 1968 Computer experiment on smoke diffusion over a Complicated topography, 

HINZE, J. 0. & VAN DEB HEGGE ZIJNEN, B. G. 1951 Local transfer of heat in a.niso- 

Mech. Stosowanej. 16, 661. 

lent motion: Qmrt. J .  Mech. Appl. Math. 7, 83. 

(ed. G. K. Batchelor & R. M. Davis), p. 352. Cambridge University Press. 

to World Met. Ofice Tech. Note. no. 121. 

de Math. 1, 285. (See also Cornph Rendwr, 133, 257.) 

auf die Schadgasausbreitung in der Atmosphare. Staub, 24, 223. 

TR-69-8. 

Atrnos. Environ. 2, 541. 

tropic turbulence. Inst. Mech. Eng. General Disczcssion on Heat Transfer, p. 188. 
18 FLM 61 



274 J. C. R. Hunt and P. J .  Mwlhearn 

HOLFORD, LORD 1971 Problems for the architect and town planner caused by air in 
motion. Phil. Trans. Roy. SOC. A 269, 335. 

HUNT, J. C. R. 1971 Discussion of ‘Measurements on the release of gaseous activity from 
a short stack.’ Atmos. Enuiron. 6, 289. 

HUNT, J. C. R. 1973 Turbulent flow round two-dimensional bluff bodies. J .  Fluid Mech. 
61, to appear. 

KING, L. V. 1914 On the convection of heat from small cylinders in a stream of fluid: 
determination of the convection constants of small platinum wires with applications 
to hot wire anemometry. Phil. Trans. Roy. SOC. A 214, 373. 

MCCORMICK, R. A. 1971 Air pollution in the locality of buildings. Phil. Trans. Roy. SOC. 
A 269,515. 

PASQUILL, F. 1962 Atmospheric Diflusion. Von Nostrand. 
PASQUILL, F. 1971 Atmospheric dispersion of pollution. Quart. J .  Roy. Met. SOC. 97, 369. 
PASQUILL, F. 1972 Factors determining pollution from local sources in industrial and 

urban areas. Met. Mag. 101, 1. 
RODLIFFE, R.  L. & FRASER, A. J. 1971 Measurements on the release of gaseous activity 

from a short stack. Amos.  Enwiron. 5, 193. 
SAFFMAN, P. G. 1960 On the effect of the molecular diffusivity in turbulent diffusion. 

J .  Fluid Mech. 8, 271. 
SCRIVEN, R. A. 1970 Variability and upper bounds for maximum ground level concentra- 

tions. Phil. Trans. Roy. SOC. A 265, 209. 
SCRIVEN, R. A. & MOORE, D. J. 1902 The estimation of gamma dose rates from shield 

cooling air in the near vicinity of nuclear power stations. Symp.  on  Reactor Safety & 
Hazards Evaluation Techniques, pp. 339-375. Vienna : International Atomic Energy 
Agency. 

STUMKE, H. 1964 Inclusion of simplified types of terrain in calculations of turbulent 
diffusion of gases from chimneys (in German). Staub, 24, 175. 

SYNDER, W. H. & LUMLEY, J. L. 1971 Some measurements of particle velocity auto- 
correlation functions in a turbulent flow. J .  Fluid Mech. 48, 41. 

TAYLOR, G. I. 1921 Diffusion by continuous movements. Proc. Lo&. Math. SOC. 20 (2), 
196. 

TENNEKES, H. & LUMLEY, J. L. 1972 A First Course in Turbulence. M.I.T. Press. 




